Papers
Topics
Authors
Recent
Search
2000 character limit reached

PB-LRDWWS System for the SLT 2024 Low-Resource Dysarthria Wake-Up Word Spotting Challenge

Published 7 Sep 2024 in cs.SD and eess.AS | (2409.04799v2)

Abstract: For the SLT 2024 Low-Resource Dysarthria Wake-Up Word Spotting (LRDWWS) Challenge, we introduce the PB-LRDWWS system. This system combines a dysarthric speech content feature extractor for prototype construction with a prototype-based classification method. The feature extractor is a fine-tuned HuBERT model obtained through a three-stage fine-tuning process using cross-entropy loss. This fine-tuned HuBERT extracts features from the target dysarthric speaker's enrollment speech to build prototypes. Classification is achieved by calculating the cosine similarity between the HuBERT features of the target dysarthric speaker's evaluation speech and prototypes. Despite its simplicity, our method demonstrates effectiveness through experimental results. Our system achieves second place in the final Test-B of the LRDWWS Challenge.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.