Papers
Topics
Authors
Recent
2000 character limit reached

Connectivity-Inspired Network for Context-Aware Recognition (2409.04360v1)

Published 6 Sep 2024 in cs.CV, cs.AI, and eess.IV

Abstract: The aim of this paper is threefold. We inform the AI practitioner about the human visual system with an extensive literature review; we propose a novel biologically motivated neural network for image classification; and, finally, we present a new plug-and-play module to model context awareness. We focus on the effect of incorporating circuit motifs found in biological brains to address visual recognition. Our convolutional architecture is inspired by the connectivity of human cortical and subcortical streams, and we implement bottom-up and top-down modulations that mimic the extensive afferent and efferent connections between visual and cognitive areas. Our Contextual Attention Block is simple and effective and can be integrated with any feed-forward neural network. It infers weights that multiply the feature maps according to their causal influence on the scene, modeling the co-occurrence of different objects in the image. We place our module at different bottlenecks to infuse a hierarchical context awareness into the model. We validated our proposals through image classification experiments on benchmark data and found a consistent improvement in performance and the robustness of the produced explanations via class activation. Our code is available at https://github.com/gianlucarloni/CoCoReco.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: