Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
95 tokens/sec
Gemini 2.5 Pro Premium
32 tokens/sec
GPT-5 Medium
18 tokens/sec
GPT-5 High Premium
20 tokens/sec
GPT-4o
97 tokens/sec
DeepSeek R1 via Azure Premium
87 tokens/sec
GPT OSS 120B via Groq Premium
468 tokens/sec
Kimi K2 via Groq Premium
202 tokens/sec
2000 character limit reached

Hybrid Cost Volume for Memory-Efficient Optical Flow (2409.04243v1)

Published 6 Sep 2024 in cs.CV

Abstract: Current state-of-the-art flow methods are mostly based on dense all-pairs cost volumes. However, as image resolution increases, the computational and spatial complexity of constructing these cost volumes grows at a quartic rate, making these methods impractical for high-resolution images. In this paper, we propose a novel Hybrid Cost Volume for memory-efficient optical flow, named HCV. To construct HCV, we first propose a Top-k strategy to separate the 4D cost volume into two global 3D cost volumes. These volumes significantly reduce memory usage while retaining a substantial amount of matching information. We further introduce a local 4D cost volume with a local search space to supplement the local information for HCV. Based on HCV, we design a memory-efficient optical flow network, named HCVFlow. Compared to the recurrent flow methods based the all-pairs cost volumes, our HCVFlow significantly reduces memory consumption while ensuring high accuracy. We validate the effectiveness and efficiency of our method on the Sintel and KITTI datasets and real-world 4K (2160*3840) resolution images. Extensive experiments show that our HCVFlow has very low memory usage and outperforms other memory-efficient methods in terms of accuracy. The code is publicly available at https://github.com/gangweiX/HCVFlow.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com
X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube