Quantum Natural Gradient with Geodesic Corrections for Small Shallow Quantum Circuits (2409.03638v3)
Abstract: The Quantum Natural Gradient (QNG) method enhances optimization in variational quantum algorithms (VQAs) by incorporating geometric insights from the quantum state space through the Fubini-Study metric. In this work, we extend QNG by introducing higher-order integrators and geodesic corrections using the Riemannian Euler update rule and geodesic equations, deriving an updated rule for the Quantum Natural Gradient with Geodesic Correction (QNGGC). We also develop an efficient method for computing the Christoffel symbols necessary for these corrections, leveraging the parameter-shift rule to enable direct measurement from quantum circuits. Through theoretical analysis and practical examples, we demonstrate that QNGGC significantly improves convergence rates over standard QNG, highlighting the benefits of integrating geodesic corrections into quantum optimization processes. Our approach paves the way for more efficient quantum algorithms, leveraging the advantages of geometric methods.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.