Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Time-Varying Soft-Maximum Barrier Functions for Safety in Unmapped and Dynamic Environments (2409.01458v2)

Published 2 Sep 2024 in cs.RO, cs.SY, and eess.SY

Abstract: We present a closed-form optimal feedback control method that ensures safety in an a prior unknown and potentially dynamic environment. This article considers the scenario where local perception data (e.g., LiDAR) is obtained periodically, and this data can be used to construct a local control barrier function (CBF) that models a local set that is safe for a period of time into the future. Then, we use a smooth time-varying soft-maximum function to compose the N most recently obtained local CBFs into a single barrier function that models an approximate union of the N most recently obtained local sets. This composite barrier function is used in a constrained quadratic optimization, which is solved in closed form to obtain a safe-and-optimal feedback control. We also apply the time-varying soft-maximum barrier function control to 2 robotic systems (nonholonomic ground robot with nonnegligible inertia, and quadrotor robot), where the objective is to navigate an a priori unknown environment safely and reach a target destination. In these applications, we present a simple approach to generate local CBFs from periodically obtained perception data.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube