Papers
Topics
Authors
Recent
2000 character limit reached

Large Language Models Can Understanding Depth from Monocular Images (2409.01133v1)

Published 2 Sep 2024 in cs.CV and cs.AI

Abstract: Monocular depth estimation is a critical function in computer vision applications. This paper shows that LLMs can effectively interpret depth with minimal supervision, using efficient resource utilization and a consistent neural network architecture. We introduce LLM-MDE, a multimodal framework that deciphers depth through language comprehension. Specifically, LLM-MDE employs two main strategies to enhance the pretrained LLM's capability for depth estimation: cross-modal reprogramming and an adaptive prompt estimation module. These strategies align vision representations with text prototypes and automatically generate prompts based on monocular images, respectively. Comprehensive experiments on real-world MDE datasets confirm the effectiveness and superiority of LLM-MDE, which excels in few-/zero-shot tasks while minimizing resource use. The source code is available.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.