Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Abstracted Gaussian Prototypes for One-Shot Concept Learning (2408.17251v1)

Published 30 Aug 2024 in cs.CV and cs.AI

Abstract: We introduce a cluster-based generative image segmentation framework to encode higher-level representations of visual concepts based on one-shot learning inspired by the Omniglot Challenge. The inferred parameters of each component of a Gaussian Mixture Model (GMM) represent a distinct topological subpart of a visual concept. Sampling new data from these parameters generates augmented subparts to build a more robust prototype for each concept, i.e., the Abstracted Gaussian Prototype (AGP). This framework addresses one-shot classification tasks using a cognitively-inspired similarity metric and addresses one-shot generative tasks through a novel AGP-VAE pipeline employing variational autoencoders (VAEs) to generate new class variants. Results from human judges reveal that the generative pipeline produces novel examples and classes of visual concepts that are broadly indistinguishable from those made by humans. The proposed framework leads to impressive but not state-of-the-art classification accuracy; thus, the contribution is two-fold: 1) the system is uniquely low in theoretical and computational complexity and operates in a completely standalone manner compared while existing approaches draw heavily on pre-training or knowledge engineering; and 2) in contrast with competing neural network models, the AGP approach addresses the importance of breadth of task capability emphasized in the Omniglot challenge (i.e., successful performance on generative tasks). These two points are critical as we advance toward an understanding of how learning/reasoning systems can produce viable, robust, and flexible concepts based on literally nothing more than a single example.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube