Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Concept Saliency Maps to Visualize Relevant Features in Deep Generative Models (1910.13140v1)

Published 29 Oct 2019 in cs.LG, cs.CV, and stat.ML

Abstract: Evaluating, explaining, and visualizing high-level concepts in generative models, such as variational autoencoders (VAEs), is challenging in part due to a lack of known prediction classes that are required to generate saliency maps in supervised learning. While saliency maps may help identify relevant features (e.g., pixels) in the input for classification tasks of deep neural networks, similar frameworks are understudied in unsupervised learning. Therefore, we introduce a new method of obtaining saliency maps for latent representations of known or novel high-level concepts, often called concept vectors in generative models. Concept scores, analogous to class scores in classification tasks, are defined as dot products between concept vectors and encoded input data, which can be readily used to compute the gradients. The resulting concept saliency maps are shown to highlight input features deemed important for high-level concepts. Our method is applied to the VAE's latent space of CelebA dataset in which known attributes such as "smiles" and "hats" are used to elucidate relevant facial features. Furthermore, our application to spatial transcriptomic (ST) data of a mouse olfactory bulb demonstrates the potential of latent representations of morphological layers and molecular features in advancing our understanding of complex biological systems. By extending the popular method of saliency maps to generative models, the proposed concept saliency maps help improve interpretability of latent variable models in deep learning. Codes to reproduce and to implement concept saliency maps: https://github.com/lenbrocki/concept-saliency-maps

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com