The linear Shafarevich conjecture for quasiprojective varieties and algebraicity of Shafarevich morphisms (2408.16441v1)
Abstract: We prove that the universal cover of a normal complex algebraic variety admitting a faithful complex representation of its fundamental group is an analytic Zariski open subset of a holomorphically convex complex space. This is a non-proper version of the Shafarevich conjecture. More generally we define a class of subset of the Betti stack for which the covering space trivializing the corresponding local systems has this property. Secondly, we show that for any complex local system $V$ on a normal complex algebraic variety $X$ there is an algebraic map $f \colon X\to Y$ contracting precisely the subvarieties on which $V$ is isotrivial.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.