Papers
Topics
Authors
Recent
2000 character limit reached

Addressing common misinterpretations of KART and UAT in neural network literature (2408.16389v4)

Published 29 Aug 2024 in cs.LG and cs.NE

Abstract: This note addresses the Kolmogorov-Arnold Representation Theorem (KART) and the Universal Approximation Theorem (UAT), focusing on their common and frequent misinterpretations in many papers related to neural network approximation. Our remarks aim to support a more accurate understanding of KART and UAT among neural network specialists. In addition, we explore the minimal number of neurons required for universal approximation, showing that KART's lower bounds extend to standard multilayer perceptrons, even with smooth activation functions.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.