Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 159 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 37 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A New Era in Computational Pathology: A Survey on Foundation and Vision-Language Models (2408.14496v3)

Published 23 Aug 2024 in cs.LG, cs.AI, cs.CL, and eess.IV

Abstract: Recent advances in deep learning have completely transformed the domain of computational pathology (CPath). More specifically, it has altered the diagnostic workflow of pathologists by integrating foundation models (FMs) and vision-LLMs (VLMs) in their assessment and decision-making process. The limitations of existing deep learning approaches in CPath can be overcome by FMs through learning a representation space that can be adapted to a wide variety of downstream tasks without explicit supervision. Deploying VLMs allow pathology reports written in natural language be used as rich semantic information sources to improve existing models as well as generate predictions in natural language form. In this survey, a holistic and systematic overview of recent innovations in FMs and VLMs in CPath is presented. Furthermore, the tools, datasets and training schemes for these models are summarized in addition to categorizing them into distinct groups. This extensive survey highlights the current trends in CPath and its possible revolution through the use of FMs and VLMs in the future.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 tweets and received 2 likes.

Upgrade to Pro to view all of the tweets about this paper: