Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

An Information-Theoretic Approach to Generalization Theory (2408.13275v1)

Published 20 Aug 2024 in stat.ML and cs.LG

Abstract: We investigate the in-distribution generalization of machine learning algorithms. We depart from traditional complexity-based approaches by analyzing information-theoretic bounds that quantify the dependence between a learning algorithm and the training data. We consider two categories of generalization guarantees: 1) Guarantees in expectation: These bounds measure performance in the average case. Here, the dependence between the algorithm and the data is often captured by information measures. While these measures offer an intuitive interpretation, they overlook the geometry of the algorithm's hypothesis class. Here, we introduce bounds using the Wasserstein distance to incorporate geometry, and a structured, systematic method to derive bounds capturing the dependence between the algorithm and an individual datum, and between the algorithm and subsets of the training data. 2) PAC-Bayesian guarantees: These bounds measure the performance level with high probability. Here, the dependence between the algorithm and the data is often measured by the relative entropy. We establish connections between the Seeger--Langford and Catoni's bounds, revealing that the former is optimized by the Gibbs posterior. We introduce novel, tighter bounds for various types of loss functions. To achieve this, we introduce a new technique to optimize parameters in probabilistic statements. To study the limitations of these approaches, we present a counter-example where most of the information-theoretic bounds fail while traditional approaches do not. Finally, we explore the relationship between privacy and generalization. We show that algorithms with a bounded maximal leakage generalize. For discrete data, we derive new bounds for differentially private algorithms that guarantee generalization even with a constant privacy parameter, which is in contrast to previous bounds in the literature.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: