Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Dataset | Mindset = Explainable AI | Interpretable AI (2408.12420v1)

Published 22 Aug 2024 in cs.AI

Abstract: We often use "explainable" Artificial Intelligence (XAI)" and "interpretable AI (IAI)" interchangeably when we apply various XAI tools for a given dataset to explain the reasons that underpin ML outputs. However, these notions can sometimes be confusing because interpretation often has a subjective connotation, while explanations lean towards objective facts. We argue that XAI is a subset of IAI. The concept of IAI is beyond the sphere of a dataset. It includes the domain of a mindset. At the core of this ambiguity is the duality of reasons, in which we can reason either outwards or inwards. When directed outwards, we want the reasons to make sense through the laws of nature. When turned inwards, we want the reasons to be happy, guided by the laws of the heart. While XAI and IAI share reason as the common notion for the goal of transparency, clarity, fairness, reliability, and accountability in the context of ethical AI and trustworthy AI (TAI), their differences lie in that XAI emphasizes the post-hoc analysis of a dataset, and IAI requires a priori mindset of abstraction. This hypothesis can be proved by empirical experiments based on an open dataset and harnessed by High-Performance Computing (HPC). The demarcation of XAI and IAI is indispensable because it would be impossible to determine regulatory policies for many AI applications, especially in healthcare, human resources, banking, and finance. We aim to clarify these notions and lay the foundation of XAI, IAI, EAI, and TAI for many practitioners and policymakers in future AI applications and research.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.