Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
51 tokens/sec
GPT-4o
60 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
8 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

It is not "accuracy vs. explainability" -- we need both for trustworthy AI systems (2212.11136v2)

Published 16 Dec 2022 in cs.LG, cs.AI, and cs.CY

Abstract: We are witnessing the emergence of an AI economy and society where AI technologies are increasingly impacting health care, business, transportation and many aspects of everyday life. Many successes have been reported where AI systems even surpassed the accuracy of human experts. However, AI systems may produce errors, can exhibit bias, may be sensitive to noise in the data, and often lack technical and judicial transparency resulting in reduction in trust and challenges in their adoption. These recent shortcomings and concerns have been documented in scientific but also in general press such as accidents with self driving cars, biases in healthcare, hiring and face recognition systems for people of color, seemingly correct medical decisions later found to be made due to wrong reasons etc. This resulted in emergence of many government and regulatory initiatives requiring trustworthy and ethical AI to provide accuracy and robustness, some form of explainability, human control and oversight, elimination of bias, judicial transparency and safety. The challenges in delivery of trustworthy AI systems motivated intense research on explainable AI systems (XAI). Aim of XAI is to provide human understandable information of how AI systems make their decisions. In this paper we first briefly summarize current XAI work and then challenge the recent arguments of accuracy vs. explainability for being mutually exclusive and being focused only on deep learning. We then present our recommendations for the use of XAI in full lifecycle of high stakes trustworthy AI systems delivery, e.g. development, validation and certification, and trustworthy production and maintenance.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. D. Petkovic (1 paper)
Citations (16)