Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

FedGS: Federated Gradient Scaling for Heterogeneous Medical Image Segmentation (2408.11701v1)

Published 21 Aug 2024 in eess.IV and cs.CV

Abstract: Federated Learning (FL) in Deep Learning (DL)-automated medical image segmentation helps preserving privacy by enabling collaborative model training without sharing patient data. However, FL faces challenges with data heterogeneity among institutions, leading to suboptimal global models. Integrating Disentangled Representation Learning (DRL) in FL can enhance robustness by separating data into distinct representations. Existing DRL methods assume heterogeneity lies solely in style features, overlooking content-based variability like lesion size and shape. We propose FedGS, a novel FL aggregation method, to improve segmentation performance on small, under-represented targets while maintaining overall efficacy. FedGS demonstrates superior performance over FedAvg, particularly for small lesions, across PolypGen and LiTS datasets. The code and pre-trained checkpoints are available at the following link: https://github.com/Trustworthy-AI-UU-NKI/Federated-Learning-Disentanglement

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com