Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 123 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

On learning capacities of Sugeno integrals with systems of fuzzy relational equations (2408.07768v1)

Published 14 Aug 2024 in cs.AI

Abstract: In this article, we introduce a method for learning a capacity underlying a Sugeno integral according to training data based on systems of fuzzy relational equations. To the training data, we associate two systems of equations: a $\max-\min$ system and a $\min-\max$ system. By solving these two systems (in the case that they are consistent) using Sanchez's results, we show that we can directly obtain the extremal capacities representing the training data. By reducing the $\max-\min$ (resp. $\min-\max$) system of equations to subsets of criteria of cardinality less than or equal to $q$ (resp. of cardinality greater than or equal to $n-q$), where $n$ is the number of criteria, we give a sufficient condition for deducing, from its potential greatest solution (resp. its potential lowest solution), a $q$-maxitive (resp. $q$-minitive) capacity. Finally, if these two reduced systems of equations are inconsistent, we show how to obtain the greatest approximate $q$-maxitive capacity and the lowest approximate $q$-minitive capacity, using recent results to handle the inconsistency of systems of fuzzy relational equations.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube