Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Handling the inconsistency of systems of $\min\rightarrow$ fuzzy relational equations (2308.12385v1)

Published 22 Aug 2023 in cs.AI and cs.LO

Abstract: In this article, we study the inconsistency of systems of $\min-\rightarrow$ fuzzy relational equations. We give analytical formulas for computing the Chebyshev distances $\nabla = \inf_{d \in \mathcal{D}} \Vert \beta - d \Vert$ associated to systems of $\min-\rightarrow$ fuzzy relational equations of the form $\Gamma \Box_{\rightarrow}{\min} x = \beta$, where $\rightarrow$ is a residual implicator among the G\"odel implication $\rightarrow_G$, the Goguen implication $\rightarrow_{GG}$ or Lukasiewicz's implication $\rightarrow_L$ and $\mathcal{D}$ is the set of second members of consistent systems defined with the same matrix $\Gamma$. The main preliminary result that allows us to obtain these formulas is that the Chebyshev distance $\nabla$ is the lower bound of the solutions of a vector inequality, whatever the residual implicator used. Finally, we show that, in the case of the $\min-\rightarrow_{G}$ system, the Chebyshev distance $\nabla$ may be an infimum, while it is always a minimum for $\min-\rightarrow_{GG}$ and $\min-\rightarrow_{L}$ systems.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com