Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Segment Using Just One Example (2408.07393v1)

Published 14 Aug 2024 in cs.CV and eess.IV

Abstract: Semantic segmentation is an important topic in computer vision with many relevant application in Earth observation. While supervised methods exist, the constraints of limited annotated data has encouraged development of unsupervised approaches. However, existing unsupervised methods resemble clustering and cannot be directly mapped to explicit target classes. In this paper, we deal with single shot semantic segmentation, where one example for the target class is provided, which is used to segment the target class from query/test images. Our approach exploits recently popular Segment Anything (SAM), a promptable foundation model. We specifically design several techniques to automatically generate prompts from the only example/key image in such a way that the segmentation is successfully achieved on a stitch or concatenation of the example/key and query/test images. Proposed technique does not involve any training phase and just requires one example image to grasp the concept. Furthermore, no text-based prompt is required for the proposed method. We evaluated the proposed techniques on building and car classes.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.