Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semantically Meaningful Class Prototype Learning for One-Shot Image Semantic Segmentation (2102.10935v1)

Published 22 Feb 2021 in cs.CV and cs.MM

Abstract: One-shot semantic image segmentation aims to segment the object regions for the novel class with only one annotated image. Recent works adopt the episodic training strategy to mimic the expected situation at testing time. However, these existing approaches simulate the test conditions too strictly during the training process, and thus cannot make full use of the given label information. Besides, these approaches mainly focus on the foreground-background target class segmentation setting. They only utilize binary mask labels for training. In this paper, we propose to leverage the multi-class label information during the episodic training. It will encourage the network to generate more semantically meaningful features for each category. After integrating the target class cues into the query features, we then propose a pyramid feature fusion module to mine the fused features for the final classifier. Furthermore, to take more advantage of the support image-mask pair, we propose a self-prototype guidance branch to support image segmentation. It can constrain the network for generating more compact features and a robust prototype for each semantic class. For inference, we propose a fused prototype guidance branch for the segmentation of the query image. Specifically, we leverage the prediction of the query image to extract the pseudo-prototype and combine it with the initial prototype. Then we utilize the fused prototype to guide the final segmentation of the query image. Extensive experiments demonstrate the superiority of our proposed approach.

Citations (40)

Summary

We haven't generated a summary for this paper yet.