The gene function prediction challenge: large language models and knowledge graphs to the rescue (2408.07222v1)
Abstract: Elucidating gene function is one of the ultimate goals of plant science. Despite this, only ~15% of all genes in the model plant Arabidopsis thaliana have comprehensively experimentally verified functions. While bioinformatical gene function prediction approaches can guide biologists in their experimental efforts, neither the performance of the gene function prediction methods nor the number of experimental characterisation of genes has increased dramatically in recent years. In this review, we will discuss the status quo and the trajectory of gene function elucidation and outline the recent advances in gene function prediction approaches. We will then discuss how recent artificial intelligence advances in LLMs and knowledge graphs can be leveraged to accelerate gene function predictions and keep us updated with scientific literature.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.