Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Attention Please: What Transformer Models Really Learn for Process Prediction (2408.07097v1)

Published 12 Aug 2024 in cs.LG and cs.AI

Abstract: Predictive process monitoring aims to support the execution of a process during runtime with various predictions about the further evolution of a process instance. In the last years a plethora of deep learning architectures have been established as state-of-the-art for different prediction targets, among others the transformer architecture. The transformer architecture is equipped with a powerful attention mechanism, assigning attention scores to each input part that allows to prioritize most relevant information leading to more accurate and contextual output. However, deep learning models largely represent a black box, i.e., their reasoning or decision-making process cannot be understood in detail. This paper examines whether the attention scores of a transformer based next-activity prediction model can serve as an explanation for its decision-making. We find that attention scores in next-activity prediction models can serve as explainers and exploit this fact in two proposed graph-based explanation approaches. The gained insights could inspire future work on the improvement of predictive business process models as well as enabling a neural network based mining of process models from event logs.

Summary

We haven't generated a summary for this paper yet.