Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

On Networks and their Applications: Stability of Gene Regulatory Networks and Gene Function Prediction using Autoencoders (2408.07064v1)

Published 13 Aug 2024 in q-bio.MN and physics.bio-ph

Abstract: We prove that nested canalizing functions are the minimum-sensitivity Boolean functions for any activity ratio and we determine the functional form of this boundary which has a nontrivial fractal structure. We further observe that the majority of the gene regulatory functions found in known biological networks (submitted to the Cell Collective database) lie on the line of minimum sensitivity which paradoxically remains largely in the unstable regime. Our results provide a quantitative basis for the argument that an evolutionary preference for nested canalizing functions in gene regulation (e.g., for higher robustness) and for elasticity of gene activity are sufficient for concentration of such systems near the "edge of chaos." The original structure of gene regulatory networks is unknown due to the undiscovered functions of some genes. Most gene function discovery approaches make use of unsupervised clustering or classification methods that discover and exploit patterns in gene expression profiles. However, existing knowledge in the field derives from multiple and diverse sources. Incorporating this know-how for novel gene function prediction can, therefore, be expected to improve such predictions. We here propose a function-specific novel gene discovery tool that uses a semi-supervised autoencoder. Our method is thus able to address the needs of a modern researcher whose expertise is typically confined to a specific functional domain. Lastly, the dynamics of unorthodox learning approaches like biologically plausible learning algorithms are investigated and found to exhibit a general form of Einstein relation.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.