Papers
Topics
Authors
Recent
2000 character limit reached

Specialized Change Detection using Segment Anything (2408.06644v1)

Published 13 Aug 2024 in eess.IV and cs.CV

Abstract: Change detection (CD) is a fundamental task in Earth observation. While most change detection methods detect all changes, there is a growing need for specialized methods targeting specific changes relevant to particular applications while discarding the other changes. For instance, urban management might prioritize detecting the disappearance of buildings due to natural disasters or other reasons. Furthermore, while most supervised change detection methods require large-scale training datasets, in many applications only one or two training examples might be available instead of large datasets. Addressing such needs, we propose a focused CD approach using the Segment Anything Model (SAM), a versatile vision foundation model. Our method leverages a binary mask of the object of interest in pre-change images to detect their disappearance in post-change images. By using SAM's robust segmentation capabilities, we create prompts from the pre-change mask, use those prompts to segment the post-change image, and identify missing objects. This unsupervised approach demonstrated for building disappearance detection, is adaptable to various domains requiring specialized CD. Our contributions include defining a novel CD problem, proposing a method using SAM, and demonstrating its effectiveness. The proposed method also has benefits related to privacy preservation.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.