Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Audio-visual cross-modality knowledge transfer for machine learning-based in-situ monitoring in laser additive manufacturing (2408.05307v4)

Published 9 Aug 2024 in cs.CE and cs.LG

Abstract: Various ML-based in-situ monitoring systems have been developed to detect anomalies and defects in laser additive manufacturing (LAM) processes. While multimodal fusion, which integrates data from visual, audio, and other modalities, can improve monitoring performance, it also increases hardware, computational, and operational costs. This paper introduces a cross-modality knowledge transfer (CMKT) methodology for LAM in-situ monitoring, which transfers knowledge from a source modality to a target modality. CMKT enhances the representativeness of the features extracted from the target modality, allowing the removal of source modality sensors during prediction. This paper proposes three CMKT methods: semantic alignment, fully supervised mapping, and semi-supervised mapping. The semantic alignment method establishes a shared encoded space between modalities to facilitate knowledge transfer. It employs a semantic alignment loss to align the distributions of identical groups (e.g., visual and audio defective groups) and a separation loss to distinguish different groups (e.g., visual defective and audio defect-free groups). The two mapping methods transfer knowledge by deriving features from one modality to another using fully supervised and semi-supervised learning approaches. In a case study for LAM in-situ defect detection, the proposed CMKT methods were compared with multimodal audio-visual fusion. The semantic alignment method achieved an accuracy of 98.6% while removing the audio modality during the prediction phase, which is comparable to the 98.2% accuracy obtained through multimodal fusion. Using explainable artificial intelligence, we discovered that semantic alignment CMKT can extract more representative features while reducing noise by leveraging the inherent correlations between modalities.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube