Papers
Topics
Authors
Recent
2000 character limit reached

FUSE-ing Language Models: Zero-Shot Adapter Discovery for Prompt Optimization Across Tokenizers (2408.04816v1)

Published 9 Aug 2024 in cs.CL and cs.LG

Abstract: The widespread use of LLMs has resulted in a multitude of tokenizers and embedding spaces, making knowledge transfer in prompt discovery tasks difficult. In this work, we propose FUSE (Flexible Unification of Semantic Embeddings), an inexpensive approach to approximating an adapter layer that maps from one model's textual embedding space to another, even across different tokenizers. We introduce a third-order tensor-based representation of a model's embedding space that aligns semantic embeddings that have been split apart by different tokenizers, and use this representation to derive an approximation of the gradient of one model's outputs with respect to another model's embedding space. We show the efficacy of our approach via multi-objective optimization over vision-language and causal LLMs for image captioning and sentiment-based image captioning.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.