Papers
Topics
Authors
Recent
2000 character limit reached

AI and Machine Learning Driven Indoor Localization and Navigation with Mobile Embedded Systems (2408.04797v1)

Published 9 Aug 2024 in cs.LG, cs.AI, and cs.RO

Abstract: Indoor navigation is a foundational technology to assist the tracking and localization of humans, autonomous vehicles, drones, and robots in indoor spaces. Due to the lack of penetration of GPS signals in buildings, subterranean locales, and dense urban environments, indoor navigation solutions typically make use of ubiquitous wireless signals (e.g., WiFi) and sensors in mobile embedded systems to perform tracking and localization. This article provides an overview of the many challenges facing state-of-the-art indoor navigation solutions, and then describes how AI algorithms deployed on mobile embedded systems can overcome these challenges.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.