Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
93 tokens/sec
Gemini 2.5 Pro Premium
54 tokens/sec
GPT-5 Medium
22 tokens/sec
GPT-5 High Premium
17 tokens/sec
GPT-4o
101 tokens/sec
DeepSeek R1 via Azure Premium
91 tokens/sec
GPT OSS 120B via Groq Premium
441 tokens/sec
Kimi K2 via Groq Premium
225 tokens/sec
2000 character limit reached

Optimization-Driven Adaptive Experimentation (2408.04570v2)

Published 8 Aug 2024 in cs.LG

Abstract: Real-world experiments involve batched & delayed feedback, non-stationarity, multiple objectives & constraints, and (often some) personalization. Tailoring adaptive methods to address these challenges on a per-problem basis is infeasible, and static designs remain the de facto standard. Focusing on short-horizon ($\le 10$) adaptive experiments, we move away from bespoke algorithms and present a mathematical programming formulation that can flexibly incorporate a wide range of objectives, constraints, and statistical procedures. We formulating a dynamic program based on central limit approximations, which enables the use of scalable optimization methods based on auto-differentiation and GPU parallelization. To evaluate our framework, we implement a simple heuristic planning method ("solver") and benchmark it across hundreds of problem instances involving non-stationarity, personalization, and multiple objectives & constraints. Unlike bespoke methods (e.g., Thompson sampling variants), our mathematical programming framework provides consistent gains over static randomized control trials and exhibits robust performance across problem instances.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube