Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

AggSS: An Aggregated Self-Supervised Approach for Class-Incremental Learning (2408.04347v1)

Published 8 Aug 2024 in cs.CV

Abstract: This paper investigates the impact of self-supervised learning, specifically image rotations, on various class-incremental learning paradigms. Here, each image with a predefined rotation is considered as a new class for training. At inference, all image rotation predictions are aggregated for the final prediction, a strategy we term Aggregated Self-Supervision (AggSS). We observe a shift in the deep neural network's attention towards intrinsic object features as it learns through AggSS strategy. This learning approach significantly enhances class-incremental learning by promoting robust feature learning. AggSS serves as a plug-and-play module that can be seamlessly incorporated into any class-incremental learning framework, leveraging its powerful feature learning capabilities to enhance performance across various class-incremental learning approaches. Extensive experiments conducted on standard incremental learning datasets CIFAR-100 and ImageNet-Subset demonstrate the significant role of AggSS in improving performance within these paradigms.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube