Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 177 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Generating Fine-Grained Causality in Climate Time Series Data for Forecasting and Anomaly Detection (2408.04254v1)

Published 8 Aug 2024 in cs.LG

Abstract: Understanding the causal interaction of time series variables can contribute to time series data analysis for many real-world applications, such as climate forecasting and extreme weather alerts. However, causal relationships are difficult to be fully observed in real-world complex settings, such as spatial-temporal data from deployed sensor networks. Therefore, to capture fine-grained causal relations among spatial-temporal variables for further a more accurate and reliable time series analysis, we first design a conceptual fine-grained causal model named TBN Granger Causality, which adds time-respecting Bayesian Networks to the previous time-lagged Neural Granger Causality to offset the instantaneous effects. Second, we propose an end-to-end deep generative model called TacSas, which discovers TBN Granger Causality in a generative manner to help forecast time series data and detect possible anomalies during the forecast. For evaluations, besides the causality discovery benchmark Lorenz-96, we also test TacSas on climate benchmark ERA5 for climate forecasting and the extreme weather benchmark of NOAA for extreme weather alerts.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: