Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Learning-based Group Causal Inference in Multivariate Time-series (2401.08386v1)

Published 16 Jan 2024 in cs.LG and cs.AI

Abstract: Causal inference in a nonlinear system of multivariate timeseries is instrumental in disentangling the intricate web of relationships among variables, enabling us to make more accurate predictions and gain deeper insights into real-world complex systems. Causality methods typically identify the causal structure of a multivariate system by considering the cause-effect relationship of each pair of variables while ignoring the collective effect of a group of variables or interactions involving more than two-time series variables. In this work, we test model invariance by group-level interventions on the trained deep networks to infer causal direction in groups of variables, such as climate and ecosystem, brain networks, etc. Extensive testing with synthetic and real-world time series data shows a significant improvement of our method over other applied group causality methods and provides us insights into real-world time series. The code for our method can be found at:https://github.com/wasimahmadpk/gCause.

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com