MU-MAE: Multimodal Masked Autoencoders-Based One-Shot Learning (2408.04243v1)
Abstract: With the exponential growth of multimedia data, leveraging multimodal sensors presents a promising approach for improving accuracy in human activity recognition. Nevertheless, accurately identifying these activities using both video data and wearable sensor data presents challenges due to the labor-intensive data annotation, and reliance on external pretrained models or additional data. To address these challenges, we introduce Multimodal Masked Autoencoders-Based One-Shot Learning (Mu-MAE). Mu-MAE integrates a multimodal masked autoencoder with a synchronized masking strategy tailored for wearable sensors. This masking strategy compels the networks to capture more meaningful spatiotemporal features, which enables effective self-supervised pretraining without the need for external data. Furthermore, Mu-MAE leverages the representation extracted from multimodal masked autoencoders as prior information input to a cross-attention multimodal fusion layer. This fusion layer emphasizes spatiotemporal features requiring attention across different modalities while highlighting differences from other classes, aiding in the classification of various classes in metric-based one-shot learning. Comprehensive evaluations on MMAct one-shot classification show that Mu-MAE outperforms all the evaluated approaches, achieving up to an 80.17% accuracy for five-way one-shot multimodal classification, without the use of additional data.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.