Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

The multivariate fractional Ornstein-Uhlenbeck process (2408.03051v1)

Published 6 Aug 2024 in math.PR and stat.ME

Abstract: Starting from the notion of multivariate fractional Brownian Motion introduced in [F. Lavancier, A. Philippe, and D. Surgailis. Covariance function of vector self-similar processes. Statistics & Probability Letters, 2009] we define a multivariate version of the fractional Ornstein-Uhlenbeck process. This multivariate Gaussian process is stationary, ergodic and allows for different Hurst exponents on each component. We characterize its correlation matrix and its short and long time asymptotics. Besides the marginal parameters, the cross correlation between one-dimensional marginal components is ruled by two parameters. We consider the problem of their inference, proposing two types of estimator, constructed from discrete observations of the process. We establish their asymptotic theory, in one case in the long time asymptotic setting, in the other case in the infill and long time asymptotic setting. The limit behavior can be asymptotically Gaussian or non-Gaussian, depending on the values of the Hurst exponents of the marginal components. The technical core of the paper relies on the analysis of asymptotic properties of functionals of Gaussian processes, that we establish using Malliavin calculus and Stein's method. We provide numerical experiments that support our theoretical analysis and also suggest a conjecture on the application of one of these estimators to the multivariate fractional Brownian Motion.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube