Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Long-memory Gaussian processes governed by generalized Fokker-Planck equations (1810.12011v2)

Published 29 Oct 2018 in math.PR

Abstract: It is well-known that the transition function of the Ornstein-Uhlenbeck process solves the Fokker-Planck equation. This standard setting has been recently generalized in different directions, for example, by considering the so-called $\alpha $-stable driven Ornstein-Uhlenbeck, or by time-changing the original process with an inverse stable subordinator. In both cases, the corresponding partial differential equations involve fractional derivatives (of Riesz and Riemann-Liouville types, respectively) and the solution is not Gaussian. We consider here a new model, which cannot be expressed by a random time-change of the original process: we start by a Fokker-Planck equation (in Fourier space) with the time-derivative replaced by a new fractional differential operator. The resulting process is Gaussian and, in the stationary case, exhibits a long-range dependence. Moreover, we consider further extensions, by means of the so-called convolution-type derivative.

Summary

We haven't generated a summary for this paper yet.