Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Spatial and Spatial-Spectral Morphological Mamba for Hyperspectral Image Classification (2408.01372v3)

Published 2 Aug 2024 in cs.CV and eess.IV

Abstract: Recent advancements in transformers, specifically self-attention mechanisms, have significantly improved hyperspectral image (HSI) classification. However, these models often suffer from inefficiencies, as their computational complexity scales quadratically with sequence length. To address these challenges, we propose the morphological spatial mamba (SMM) and morphological spatial-spectral Mamba (SSMM) model (MorpMamba), which combines the strengths of morphological operations and the state space model framework, offering a more computationally efficient alternative to transformers. In MorpMamba, a novel token generation module first converts HSI patches into spatial-spectral tokens. These tokens are then processed through morphological operations such as erosion and dilation, utilizing depthwise separable convolutions to capture structural and shape information. A token enhancement module refines these features by dynamically adjusting the spatial and spectral tokens based on central HSI regions, ensuring effective feature fusion within each block. Subsequently, multi-head self-attention is applied to further enrich the feature representations, allowing the model to capture complex relationships and dependencies within the data. Finally, the enhanced tokens are fed into a state space module, which efficiently models the temporal evolution of the features for classification. Experimental results on widely used HSI datasets demonstrate that MorpMamba achieves superior parametric efficiency compared to traditional CNN and transformer models while maintaining high accuracy. The code will be made publicly available at \url{https://github.com/mahmad000/MorpMamba}.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 posts and received 0 likes.