Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Multi-GPU RI-HF Energies and Analytic Gradients $-$ Towards High Throughput Ab Initio Molecular Dynamics (2407.19614v2)

Published 29 Jul 2024 in physics.comp-ph, cond-mat.mtrl-sci, physics.chem-ph, and quant-ph

Abstract: This article presents an optimized algorithm and implementation for calculating resolution-of-the-identity Hartree-Fock (RI-HF) energies and analytic gradients using multiple Graphics Processing Units (GPUs). The algorithm is especially designed for high throughput \emph{ab initio} molecular dynamics simulations of small and medium size molecules (10-100 atoms). Key innovations of this work include the exploitation of multi-GPU parallelism and a workload balancing scheme that efficiently distributes computational tasks among GPUs. Our implementation also employs techniques for symmetry utilization, integral screening and leveraging sparsity to optimize memory usage and computational efficiency. Computational results show that the implementation achieves significant performance improvements, including over $3\times$ speedups in single GPU AIMD throughput compared to previous GPU-accelerated RI-HF and traditional HF methods. Furthermore, utilizing multiple GPUs can provide super-linear speedup when the additional aggregate GPU memory allows for the storage of decompressed three-center integrals. Additionally, we report strong scaling efficiencies for systems up to 1000 basis functions and demonstrate practical applications through extensive performance benchmarks on up to quadruple-$\zeta$ primary basis sets, achieving floating-point performance of up to 47\% of the theoretical peak on a 4$\times$A100 GPU node.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube