Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Fast and Scalable GPU-Accelerated Quantum Chemistry for Periodic Systems with Gaussian Orbitals: Implementation and Hybrid Density Functional Theory Calculations (2410.22278v1)

Published 29 Oct 2024 in physics.chem-ph and cond-mat.mtrl-sci

Abstract: Efficient hybrid DFT simulations of solid state materials would be extremely beneficial for computational chemistry and materials science, but is presently bottlenecked by difficulties in computing Hartree-Fock (HF) exchange with plane wave orbital bases. We present a GPU-accelerated, Gaussian orbital based integral algorithm for systems with periodic boundary conditions, which takes advantage of Ewald summation to efficiently compute electrostatic interactions. We have implemented this approach into the TeraChem software package within the $\Gamma$ point approximation, enabling simulation of unit cells with hundreds or thousands of atoms at the HF or hybrid DFT level on a single GPU card. Our implementation readily parallelizes over multiple GPUs and paves the road to accurate simulation of the properties and dynamics of extended materials in both the ground and excited states.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. Krukau, A. V.; Vydrov, O. A.; Izmaylov, A. F.; Scuseria, G. E. Influence of the exchange screening parameter on the performance of screened hybrid functionals. The Journal of Chemical Physics 2006, 125.
  2. Katagiri, H. Equation-of-motion coupled-cluster study on exciton states of polyethylene with periodic boundary condition. The Journal of Chemical Physics 2005, 122.
  3. Ye, H.-Z.; Berkelbach, T. C. Periodic Local Coupled-Cluster Theory for Insulators and Metals. J. Chem. Theory Comput. 2024,
  4. Bylaska, E. J. Plane-wave DFT methods for chemistry. In Annual Reports in Computational Chemistry; Elsevier, 2017; Vol. 13; pp 185–228.
  5. Mortensen, J. J.; Larsen, A. H.; Kuisma, M.; Ivanov, A. V.; Taghizadeh, A.; Peterson, A.; Haldar, A.; Dohn, A. O.; Schäfer, C.; Jónsson, E. Ö. et al. GPAW: An open Python package for electronic structure calculations. The Journal of Chemical Physics 2024, 160.
  6. Sorouri, A.; Foulkes, W. M. C.; Hine, N. D. Accurate and efficient method for the treatment of exchange in a plane-wave basis. The Journal of Chemical Physics 2006, 124.
  7. Sun, Q.; Berkelbach, T. C.; McClain, J. D.; Chan, G. K. Gaussian and plane-wave mixed density fitting for periodic systems. The Journal of chemical physics 2017, 147.
  8. Sun, Q. Various integral estimations and screening schemes for extended systems in PySCF. arXiv preprint arXiv:2302.11307 2023,
  9. Lee, J.; Feng, X.; Cunha, L. A.; Gonthier, J. F.; Epifanovsky, E.; Head-Gordon, M. Approaching the basis set limit in Gaussian-orbital-based periodic calculations with transferability: Performance of pure density functionals for simple semiconductors. The Journal of Chemical Physics 2021, 155.
  10. Wang, X.; Lewis, C. A.; Valeev, E. F. Efficient evaluation of exact exchange for periodic systems via concentric atomic density fitting. The Journal of Chemical Physics 2020, 153.
  11. Ye, H.-Z.; Berkelbach, T. C. Fast periodic Gaussian density fitting by range separation. The Journal of Chemical Physics 2021, 154.
  12. Tymczak, C.; Challacombe, M. Linear scaling computation of the Fock matrix. VII. Periodic density functional theory at the ΓΓ\Gammaroman_Γ point. The Journal of Chemical Physics 2005, 122.
  13. Wang, Y.; Hait, D.; Johnson, K. G.; Fajen, O. J.; Guerrero, R. D.; Martínez, T. J. Extending GPU-Accelerated Gaussian Integrals in the TeraChem Software Package to f Type Orbitals: Implementation and Applications. arXiv preprint arXiv:2406.14920 2024,
  14. Wu, X.; Sun, Q.; Pu, Z.; Zheng, T.; Ma, W.; Yan, W.; Yu, X.; Wu, Z.; Huo, M.; Li, X. et al. Python-Based Quantum Chemistry Calculations with GPU Acceleration. arXiv preprint arXiv:2404.09452 2024,
  15. Holzer, C. An improved seminumerical Coulomb and exchange algorithm for properties and excited states in modern density functional theory. The Journal of Chemical Physics 2020, 153.
  16. Qi, J.; Zhang, Y.; Yang, M. A hybrid CPU/GPU method for Hartree–Fock self-consistent-field calculation. The Journal of Chemical Physics 2023, 159.
  17. Parrish, R. M.; Zhao, Y.; Hohenstein, E. G.; Martínez, T. J. Rank reduced coupled cluster theory. I. Ground state energies and wavefunctions. The Journal of Chemical Physics 2019, 150.
  18. Hohenstein, E. G.; Zhao, Y.; Parrish, R. M.; Martínez, T. J. Rank reduced coupled cluster theory. II. Equation-of-motion coupled-cluster singles and doubles. The Journal of Chemical Physics 2019, 151.
  19. Hohenstein, E. G.; Fales, B. S.; Parrish, R. M.; Martínez, T. J. Rank-reduced coupled-cluster. III. Tensor hypercontraction of the doubles amplitudes. The Journal of Chemical Physics 2022, 156.
  20. Hohenstein, E. G.; Martínez, T. J. GPU acceleration of rank-reduced coupled-cluster singles and doubles. The Journal of Chemical Physics 2021, 155.
  21. Snyder, J. W.; Fales, B. S.; Hohenstein, E. G.; Levine, B. G.; Martínez, T. J. A direct-compatible formulation of the coupled perturbed complete active space self-consistent field equations on graphical processing units. The Journal of Chemical Physics 2017, 146.
  22. Slavíček, P.; Martínez, T. J. Ab initio floating occupation molecular orbital-complete active space configuration interaction: An efficient approximation to CASSCF. The Journal of Chemical Physics 2010, 132.
  23. Fales, B. S.; Martínez, T. J. Fast transformations between configuration state function and Slater determinant bases for direct configuration interaction. The Journal of Chemical Physics 2020, 152.
  24. Maintz, S.; Eck, B.; Dronskowski, R. cuVASP: A GPU-Accelerated Plane-Wave Electronic-Structure Code. High Performance Computing in Science and Engineering’11: Transactions of the High Performance Computing Center, Stuttgart (HLRS) 2011. 2012; pp 201–205.
  25. Spiga, F.; Girotto, I. phiGEMM: a CPU-GPU library for porting Quantum ESPRESSO on hybrid systems. 2012 20th Euromicro international conference on parallel, distributed and network-based processing. 2012; pp 368–375.
  26. Pinsky, M. A. Introduction to Fourier analysis and wavelets; American Mathematical Society, 2023; Vol. 102; Chapter 4.
  27. Robinson, P. J.; Rettig, A.; Dinh, H. Q.; Chen, M.-F.; Lee, J. Condensed-Phase Quantum Chemistry. arXiv preprint arXiv:2403.13207 2024,
  28. Sun, Q.; Zhang, X.; Banerjee, S.; Bao, P.; Barbry, M.; Blunt, N. S.; Bogdanov, N. A.; Booth, G. H.; Chen, J.; Cui, Z.-H. et al. Recent developments in the PySCF program package. The Journal of Chemical Physics 2020, 153.
  29. Alexei, I. Implementation of the Particle Mesh Ewald method on a GPU. 2016.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube