Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Molecular dynamics simulations with many-body potentials on multiple GPUs - the implementation, package and performance (1212.6332v1)

Published 27 Dec 2012 in physics.comp-ph and cond-mat.mtrl-sci

Abstract: Molecular dynamics (MD) is an important research tool extensively applied in materials science. Running MD on a graphics processing unit (GPU) is an attractive new approach for accelerating MD simulations. Currently, GPU implementations of MD usually run in a one-host-process-one-GPU (OHPOG) scheme. This scheme may pose a limitation on the system size that an implementation can handle due to the small device memory relative to the host memory. In this paper, we present a one-host-process-multiple-GPU (OHPMG) implementation of MD with embedded-atom-model or semi-empirical tight-binding many-body potentials. Because more device memory is available in an OHPMG process, the system size that can be handled is increased to a few million or more atoms. In comparison with the CPU implementation, in which Newton's third law is applied to improve the computational efficiency, our OHPMG implementation has achieved a 28.9x~86.0x speedup in double precision, depending on the system size, the cut-off ranges and the number of GPUs. The implementation can also handle a group of small boxes in one run by combining the small boxes into a large box. This approach greatly improves the GPU computing efficiency when a large number of MD simulations for small boxes are needed for statistical purposes.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube