Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

XMeCap: Meme Caption Generation with Sub-Image Adaptability (2407.17152v4)

Published 24 Jul 2024 in cs.CV and cs.AI

Abstract: Humor, deeply rooted in societal meanings and cultural details, poses a unique challenge for machines. While advances have been made in natural language processing, real-world humor often thrives in a multi-modal context, encapsulated distinctively by memes. This paper poses a particular emphasis on the impact of multi-images on meme captioning. After that, we introduce the \textsc{XMeCap} framework, a novel approach that adopts supervised fine-tuning and reinforcement learning based on an innovative reward model, which factors in both global and local similarities between visuals and text. Our results, benchmarked against contemporary models, manifest a marked improvement in caption generation for both single-image and multi-image memes, as well as different meme categories. \textsc{XMeCap} achieves an average evaluation score of 75.85 for single-image memes and 66.32 for multi-image memes, outperforming the best baseline by 6.75\% and 8.56\%, respectively. This research not only establishes a new frontier in meme-related studies but also underscores the potential of machines in understanding and generating humor in a multi-modal setting.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com