Overfitting In Contrastive Learning? (2407.15863v2)
Abstract: Overfitting describes a machine learning phenomenon where the model fits too closely to the training data, resulting in poor generalization. While this occurrence is thoroughly documented for many forms of supervised learning, it is not well examined in the context of unsupervised learning. In this work we examine the nature of overfitting in unsupervised contrastive learning. We show that overfitting can indeed occur and the mechanism behind overfitting.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.