Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Benign Overfitting in Adversarially Robust Linear Classification (2112.15250v1)

Published 31 Dec 2021 in cs.LG, math.OC, and stat.ML

Abstract: "Benign overfitting", where classifiers memorize noisy training data yet still achieve a good generalization performance, has drawn great attention in the machine learning community. To explain this surprising phenomenon, a series of works have provided theoretical justification in over-parameterized linear regression, classification, and kernel methods. However, it is not clear if benign overfitting still occurs in the presence of adversarial examples, i.e., examples with tiny and intentional perturbations to fool the classifiers. In this paper, we show that benign overfitting indeed occurs in adversarial training, a principled approach to defend against adversarial examples. In detail, we prove the risk bounds of the adversarially trained linear classifier on the mixture of sub-Gaussian data under $\ell_p$ adversarial perturbations. Our result suggests that under moderate perturbations, adversarially trained linear classifiers can achieve the near-optimal standard and adversarial risks, despite overfitting the noisy training data. Numerical experiments validate our theoretical findings.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Jinghui Chen (50 papers)
  2. Yuan Cao (201 papers)
  3. Quanquan Gu (198 papers)
Citations (9)