Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 33 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 74 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 362 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Quadratic Formulation of Mutual Information for Sensor Placement Optimization using Ising and Quantum Annealing Machines (2407.14747v2)

Published 20 Jul 2024 in quant-ph

Abstract: We address a combinatorial optimization problem to determine the placement of a predefined number of sensors from multiple candidate positions, aiming to maximize information acquisition with the minimum number of sensors. Assuming that the data from predefined candidates of sensor placements follow a multivariate normal distribution, we defined mutual information (MI) between the data from selected sensor positions and the data from the others as an objective function, and formulated it in a Quadratic Unconstrainted Binary Optimization (QUBO) problem by using a method we proposed. As an example, we calculated optimal solutions of the objective functions for 3 candidates of sensor placements using a quantum annealing machine, and confirmed that the results obtained were reasonable. The formulation method we proposed can be applied to any number of sensors, and it is expected that the advantage of quantum annealing emerges as the number of sensors increases.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.