Papers
Topics
Authors
Recent
2000 character limit reached

Evaluating the Impact of Data Availability on Machine Learning-augmented MPC for a Building Energy Management System (2407.13308v1)

Published 18 Jul 2024 in eess.SY and cs.SY

Abstract: A major challenge in the development of Model Predictive Control (MPC)-based energy management systems (EMSs) for buildings is the availability of an accurate model. One approach to address this is to augment an existing gray-box model with data-driven residual estimators. The efficacy of such estimators, and hence the performance of the EMS, relies on the availability of sufficient and suitable training data. In this work, we evaluate how different data availability scenarios affect estimator and controller performance. To do this, we perform software-in-the-loop (SiL) simulation with a physics-based digital twin using real measurement data. Simulation results show that acceptable estimation and control performance can already be achieved with limited available data, and we confirm that leveraging historical data for pretraining boosts efficacy.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.