Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Online Model Estimation for Predictive Thermal Control of Buildings (1601.02947v1)

Published 27 Dec 2015 in cs.SY and cs.LG

Abstract: This study proposes a general, scalable method to learn control-oriented thermal models of buildings that could enable wide-scale deployment of cost-effective predictive controls. An Unscented Kalman Filter augmented for parameter and disturbance estimation is shown to accurately learn and predict a building's thermal response. Recent studies of heating, ventilating, and air conditioning (HVAC) systems have shown significant energy savings with advanced model predictive control (MPC). A scalable cost-effective method to readily acquire accurate, robust models of individual buildings' unique thermal envelopes has historically been elusive and hindered the widespread deployment of prediction-based control systems. Continuous commissioning and lifetime performance of these thermal models requires deployment of on-line data-driven system identification and parameter estimation routines. We propose a novel gray-box approach using an Unscented Kalman Filter based on a multi-zone thermal network and validate it with EnergyPlus simulation data. The filter quickly learns parameters of a thermal network during periods of known or constrained loads and then characterizes unknown loads in order to provide accurate 24+ hour energy predictions. This study extends our initial investigation by formalizing parameter and disturbance estimation routines and demonstrating results across a year-long study.

Citations (26)

Summary

We haven't generated a summary for this paper yet.