Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Navigating the Minefield of MT Beam Search in Cascaded Streaming Speech Translation (2407.11010v1)

Published 26 Jun 2024 in cs.CL, cs.LG, and eess.AS

Abstract: We adapt the well-known beam-search algorithm for machine translation to operate in a cascaded real-time speech translation system. This proved to be more complex than initially anticipated, due to four key challenges: (1) real-time processing of intermediate and final transcriptions with incomplete words from ASR, (2) emitting intermediate and final translations with minimal user perceived latency, (3) handling beam search hypotheses that have unequal length and different model state, and (4) handling sentence boundaries. Previous work in the field of simultaneous machine translation only implemented greedy decoding. We present a beam-search realization that handles all of the above, providing guidance through the minefield of challenges. Our approach increases the BLEU score by 1 point compared to greedy search, reduces the CPU time by up to 40% and character flicker rate by 20+% compared to a baseline heuristic that just retranslates input repeatedly.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.