Papers
Topics
Authors
Recent
Search
2000 character limit reached

Vectorization of hypotheses and speech for faster beam search in encoder decoder-based speech recognition

Published 12 Nov 2018 in cs.SD, cs.CL, eess.AS, and stat.ML | (1811.04568v1)

Abstract: Attention-based encoder decoder network uses a left-to-right beam search algorithm in the inference step. The current beam search expands hypotheses and traverses the expanded hypotheses at the next time step. This traversal is implemented using a for-loop program in general, and it leads to speed down of the recognition process. In this paper, we propose a parallelism technique for beam search, which accelerates the search process by vectorizing multiple hypotheses to eliminate the for-loop program. We also propose a technique to batch multiple speech utterances for off-line recognition use, which reduces the for-loop program with regard to the traverse of multiple utterances. This extension is not trivial during beam search unlike during training due to several pruning and thresholding techniques for efficient decoding. In addition, our method can combine scores of external modules, RNNLM and CTC, in a batch as shallow fusion. We achieved 3.7 x speedup compared with the original beam search algorithm by vectoring hypotheses, and achieved 10.5 x speedup by further changing processing unit to GPU.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.