Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

NGP-RT: Fusing Multi-Level Hash Features with Lightweight Attention for Real-Time Novel View Synthesis (2407.10482v1)

Published 15 Jul 2024 in cs.CV

Abstract: This paper presents NGP-RT, a novel approach for enhancing the rendering speed of Instant-NGP to achieve real-time novel view synthesis. As a classic NeRF-based method, Instant-NGP stores implicit features in multi-level grids or hash tables and applies a shallow MLP to convert the implicit features into explicit colors and densities. Although it achieves fast training speed, there is still a lot of room for improvement in its rendering speed due to the per-point MLP executions for implicit multi-level feature aggregation, especially for real-time applications. To address this challenge, our proposed NGP-RT explicitly stores colors and densities as hash features, and leverages a lightweight attention mechanism to disambiguate the hash collisions instead of using computationally intensive MLP. At the rendering stage, NGP-RT incorporates a pre-computed occupancy distance grid into the ray marching strategy to inform the distance to the nearest occupied voxel, thereby reducing the number of marching points and global memory access. Experimental results show that on the challenging Mip-NeRF360 dataset, NGP-RT achieves better rendering quality than previous NeRF-based methods, achieving 108 fps at 1080p resolution on a single Nvidia RTX 3090 GPU. Our approach is promising for NeRF-based real-time applications that require efficient and high-quality rendering.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com