Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bridging the Gap Between Information Seeking and Product Search Systems: Q&A Recommendation for E-commerce (2407.09653v2)

Published 12 Jul 2024 in cs.CL and cs.IR

Abstract: Consumers on a shopping mission often leverage both product search and information seeking systems, such as web search engines and Question Answering (QA) systems, in an iterative process to improve their understanding of available products and reach a purchase decision. While product search is useful for shoppers to find the actual products meeting their requirements in the catalog, information seeking systems can be utilized to answer any questions they may have to refine those requirements. The recent success of LLMs has opened up an opportunity to bridge the gap between the two tasks to help customers achieve their goals quickly and effectively by integrating conversational QA within product search. In this paper, we propose to recommend users Question-Answer (Q&A) pairs that are relevant to their product search and can help them make a purchase decision. We discuss the different aspects of the problem including the requirements and characteristics of the Q&A pairs, their generation, and the optimization of the Q&A recommendation task. We highlight the challenges, open problems, and suggested solutions to encourage future research in this emerging area.

Citations (1)

Summary

We haven't generated a summary for this paper yet.