Machine Unlearning for Medical Imaging (2407.07539v1)
Abstract: Machine unlearning is the process of removing the impact of a particular set of training samples from a pretrained model. It aims to fulfill the "right to be forgotten", which grants the individuals such as patients the right to reconsider their contribution in models including medical imaging models. In this study, we evaluate the effectiveness (performance) and computational efficiency of different unlearning algorithms in medical imaging domain. Our evaluations demonstrate that the considered unlearning algorithms perform well on the retain set (samples whose influence on the model is allowed to be retained) and forget set (samples whose contribution to the model should be eliminated), and show no bias against male or female samples. They, however, adversely impact the generalization of the model, especially for larger forget set sizes. Moreover, they might be biased against easy or hard samples, and need additional computational overhead for hyper-parameter tuning. In conclusion, machine unlearning seems promising for medical imaging, but the existing unlearning algorithms still needs further improvements to become more practical for medical applications.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.