Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

A Simple Architecture for Enterprise Large Language Model Applications based on Role based security and Clearance Levels using Retrieval-Augmented Generation or Mixture of Experts (2407.06718v1)

Published 9 Jul 2024 in cs.AI

Abstract: This study proposes a simple architecture for Enterprise application for LLMs for role based security and NATO clearance levels. Our proposal aims to address the limitations of current LLMs in handling security and information access. The proposed architecture could be used while utilizing Retrieval-Augmented Generation (RAG) and fine tuning of Mixture of experts models (MoE). It could be used only with RAG, or only with MoE or with both of them. Using roles and security clearance level of the user, documents in RAG and experts in MoE are filtered. This way information leakage is prevented.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.