2000 character limit reached
Integral Representations of Riemann auxiliary function (2407.02016v1)
Published 2 Jul 2024 in math.NT
Abstract: We prove that the auxiliary function $\mathop{\mathcal R}(s)$ has the integral representation [\mathop{\mathcal R}(s)=-\frac{2s \pi{s}e{\pi i s/4}}{\Gamma(s)}\int_0\infty y{s}\frac{1-e{-\pi y2+\pi \omega y}}{1-e{2\pi \omega y}}\,\frac{dy}{y},\qquad \omega=e{\pi i/4}, \quad\Re s>0,] valid for $\sigma>0$. The function in the integrand $\frac{1-e{-\pi y2+\pi \omega y}}{1-e{2\pi \omega y}}$ is entire. Therefore, no residue is added when we move the path of integration.